rulypirata4

iklan

Kamis, 09 Agustus 2012

LAJU REAKSI KIMIA


LAJU REAKSI

Laju / Kecepatan reaksi adalah banyaknya mol/liter suatu zat yang dapat berubah menjadi zat lain dalam setiap satuan waktu.

Untuk reaksi: aA + bB
®   mM + nN
maka kecepatan reaksinya adalah:


1 (dA)
1 d(B)
1 d(M)
1 d(N)
V = -
------- = -
------- = +
-------- = +
----------

a dt
b dt
m dt
n dt
dimana:
- 1/a . d(A) /dt
= rA
= kecepatan reaksi zat A = pengurangan konsentrasi zat A per satuan wakru.
- 1/b . d(B) /dt
= rB
= kecepatan reaksi zat B = pengurangan konsentrasi zat B per satuan waktu.
- 1/m . d(M) /dt
= rM
= kecepatan reaksi zat M = penambahan konsentrasi zat M per satuan waktu.
- 1/n . d(N) /dt
= rN
= kecepatan reaksi zat N = penambahan konsentrasi zat N per satuan waktu.
Pada umumnya kecepatan reaksi akan besar bila konsentrasi pereaksi cukup besar. Dengan berkurangnya konsentrasi pereaksi sebagai akibat reaksi, maka akan berkurang pula kecepatannya.
Secara umum kecepatan reaksi dapat dirumuskan sebagai berikut:

V = k(A) x (B) y

dimana:

V = kecepatan reaksi
k = tetapan laju reaksi
x = orde reaksi terhadap zat A
y = orde reaksi terhadap zat B
(x + y) adalah orde reaksi keseluruhan
(A) dan (B) adalah konsentrasi zat pereaksi.



Orde reaksi adalah banyaknya faktor konsentrasi zat reaktan yang mempengaruhi kecepatan reaksi.
Penentuan orde reaksi tidak dapat diturunkan dari persamaan reaksi tetapi hanya dapat ditentukan berdasarkan percobaan.

Suatu reaksi yang diturunkan secara eksperimen dinyatakan dengan rumus kecepatan reaksi :
v = k (A) (B) 2

persamaan tersebut mengandung pengertian reaksi orde 1 terhadap zat A dan merupakan reaksi orde 2 terhadap zat B. Secara keselurahan reaksi tersebut adalah reaksi orde 3.

Contoh soal:
Dari reaksi 2NO(g) + Br2(g) ®   2NOBr(g)
dibuat percobaan dan diperoleh data sebagai berikut:
No.
(NO) mol/l
(Br2) mol/l
Kecepatan Reaksi
mol / 1 / detik
1.
0.1
0.1
12
2.
0.1
0.2
24
3.
0.1
0.3
36
4.
0.2
0.1
48
5.
0.3
0.1
108
Pertanyaan:
a. Tentukan orde reaksinya !
b. Tentukan harga k (tetapan laju reaksi) !

Jawab:
a.
Pertama-tama kita misalkan rumus kecepatan reaksinya adalah V = k(NO)x(Br2)y : jadi kita harus mencari nilai x den y.
Untuk menentukan nilai x maka kita ambil data dimana konsentrasi terhadap Br2 tidak berubah, yaitu data (1) dan (4).
Dari data ini terlihat konsentrasi NO naik 2 kali sedangkan kecepatan reaksinya naik 4 kali maka :

2x = 4 ®   x = 2 (reaksi orde 2 terhadap NO)

Untuk menentukan nilai y maka kita ambil data dimana konsentrasi terhadap NO tidak berubah yaitu data (1) dan (2). Dari data ini terlihat konsentrasi Br2 naik 2 kali, sedangkan kecepatan reaksinya naik 2 kali, maka :

2y = 2 ®   y = 1 (reaksi orde 1 terhadap Br2)

Jadi rumus kecepatan reaksinya : V = k(NO)2(Br2) (reaksi orde 3)

b.
Untuk menentukan nilai k cukup kita ambil salah satu data percobaan saja misalnya data (1), maka:
V = k(NO)2(Br2)
12 = k(0.1)2(0.1)

k = 12 x 103 mol-212det-1

Teori tumbukan didasarkan atas teori kinetik gas yang mengamati tentang bagaimana suatu reaksi kimia dapat terjadi. Menurut teori tersebut kecepatan reaksi antara dua jenis molekul A dan B sama dengan jumiah tumbukan yang terjadi per satuan waktu antara kedua jenis molekul tersebut. Jumlah tumbukan yang terjadi persatuan waktu sebanding dengan konsentrasi A dan konsentrasi B. Jadi makin besar konsentrasi A dan konsentrasi B akan semakin besar pula jumlah tumbukan yang terjadi.

TEORI TUMBUKAN INI TERNYATA MEMILIKI BEBERAPA KELEMAHAN, ANTARA LAIN :
-
tidak semua tumbukan menghasilkan reaksi sebab ada energi tertentu yang harus dilewati (disebut energi aktivasi = energi pengaktifan) untak dapat menghasilkan reaksi. Reaksi hanya akan terjadi bila energi tumbukannya lebih besar atau sama dengan energi pengaktifan (Ea).

-
molekul yang lebih rumit struktur ruangnya menghasilkan tumbukan yang tidak sama jumlahnya dibandingkan dengan molekul yang sederhana struktur ruangnya.
Teori tumbukan di atas diperbaiki oleh tcori keadaan transisi atau teori laju reaksi absolut. Dalam teori ini diandaikan bahwa ada suatu keadaan yang harus dilewati oleh molekul-molekul yang bereaksi dalam tujuannya menuju ke keadaan akhir (produk). Keadaan tersebut dinamakan keadaan transisi. Mekanisme reaksi keadaan transisi dapat ditulis sebagai berikut:
A + B ®   T* --> C + D
dimana:

- A dan B adalah molekul-molekul pereaksi
- T* adalah molekul dalam keadaan transisi
- C dan D adalah molekul-molekul hasil reaksi







SECARA DIAGRAM KEADAAN TRANSISI INI DAPAT DINYATAKAN SESUAI KURVA BERIKUT


Dari diagram terlibat bahwa energi pengaktifan (Ea) merupakan energi keadaan awal sampai dengan energi keadaan transisi. Hal tersebut berarti bahwa molekul-molekul pereaksi harus memiliki energi paling sedikit sebesar energi pengaktifan (Ea) agar dapat mencapai keadaan transisi (T*) dan kemudian menjadi hasil reaksi (C + D).
Catatan :
energi pengaktifan (= energi aktivasi) adalah jumlah energi minimum yang dibutuhkan oleh molekul-molekul pereaksi agar dapat melangsungkan reaksi.

Dalam suatu reaksi kimia berlangsungnya suatu reaksi dari keadaan semula (awal) sampai keadaan akhir diperkirakan melalui beberapa tahap reaksi.
Contoh: 4 HBr(g) + O2(g) ®  2 H2O(g) + 2 Br2(g)
Dari persamaan reaksi di atas terlihat bahwa tiap 1 molekul O2 bereaksi dengan 4 molekul HBr. Suatu reaksi baru dapat berlangsung apabila ada tumbukan yang berhasil antara molekul-molekul yang bereaksi. Tumbukan sekaligus antara 4 molekul HBr dengan 1 molekul O2 kecil sekali kemungkinannya untuk berhasil. Tumbukan yang mungkin berhasil adalah tumbukan antara 2 molekul yaitu 1 molekul HBr dengan 1 molekul O2. Hal ini berarti reaksi di atas harus berlangsung dalam beberapa tahap dan diperkirakan tahap-tahapnya adalah :
Tahap 1:
HBr + O2
®   HOOBr
(lambat)
Tahap 2:
HBr + HOOBr
®   2HOBr
(cepat)
Tahap 3:
(HBr + HOBr
®   H2O + Br2) x 2
(cepat)

------------------------------------------------------ +


4 HBr + O2
--> 2H2O + 2 Br2

Dari contoh di atas ternyata secara eksperimen kecepatan berlangsungnya reaksi tersebut ditentukan oleh kecepatan reaksi pembentukan HOOBr yaitu reaksi yang berlangsungnya paling lambat.
Rangkaian tahap-tahap reaksi dalam suatu reaksi disebut "mekanisme reaksi" dan kecepatan berlangsungnya reaksi keselurahan ditentukan oleh reaksi yang paling lambat dalam mekanisme reaksi. Oleh karena itu, tahap ini disebut tahap penentu kecepatan reaksi.


Beberapa faktor yang mempengaruhi kecepatan reaksi antara lain konsentrasi, sifat zat yang bereaksi, suhu dan katalisator.
A. KONSENTRASI
Dari berbagai percobaan menunjukkan bahwa makin besar konsentrasi zat-zat yang bereaksi makin cepat reaksinya berlangsung. Makin besar konsentrasi makin banyak zat-zat yang bereaksi sehingga makinbesar kemungkinan terjadinya tumbukan dengan demikian makin besar pula kemungkinan terjadinya reaksi.

B. SIFAT ZAT YANG BEREAKSI
Sifat mudah sukarnya suatu zat bereaksi akan menentukan kecepatan berlangsungnya reaksi.
Secara umum dinyatakan bahwa:
-
Reaksi antara senyawa ion umumnya berlangsung cepat.
Hal ini disebabkan oleh adanya gaya tarik menarik antara ion-ion yang muatannya berlawanan.

Contoh: Ca2+(aq) + CO32+(aq) ®  CaCO3(s)
Reaksi ini berlangsung dengan cepat.


-
Reaksi antara senyawa kovalen umumnya berlangsung lambat.
Hal ini disebabkan karena untuk berlangsungnya reaksi tersebut dibutuhkan energi untuk memutuskan ikatan-ikatan kovalen yang terdapat dalam molekul zat yang bereaksi.

Contoh: CH4(g) + Cl2(g)
®   CH3Cl(g) + HCl(g)
Reaksi ini berjalan lambat reaksinya dapat dipercepat apabila diberi energi misalnya cahaya matahari.


C. SUHU
Pada umumnya reaksi akan berlangsung lebih cepat bila suhu dinaikkan. Dengan menaikkan suhu maka energi kinetik molekul-molekul zat yang bereaksi akan bertambah sehingga akan lebih banyak molekul yang memiliki energi sama atau lebih besar dari Ea. Dengan demikian lebih banyak molekul yang dapat mencapai keadaan transisi atau dengan kata lain kecepatan reaksi menjadi lebih besar. Secara matematis hubungan antara nilai tetapan laju reaksi (k) terhadap suhu dinyatakan oleh formulasi ARRHENIUS:
k = A . e-E/RT
dimana:

k : tetapan laju reaksi
A : tetapan Arrhenius yang harganya khas untuk setiap reaksi
E : energi pengaktifan
R : tetapan gas universal = 0.0821.atm/moloK = 8.314 joule/moloK
T : suhu reaksi (oK)


D. KATALISATOR
Katalisator adalah zat yang ditambahkan ke dalam suatu reaksi dengan maksud memperbesar kecepatan reaksi. Katalis terkadang ikut terlibat dalam reaksi tetapi tidak mengalami perubahan kimiawi yang permanen, dengan kata lain pada akhir reaksi katalis akan dijumpai kembali dalam bentuk dan jumlah yang sama seperti sebelum reaksi.
Fungsi katalis adalah memperbesar kecepatan reaksinya (mempercepat reaksi) dengan jalan memperkecil energi pengaktifan suatu reaksi dan dibentuknya tahap-tahap reaksi yang baru. Dengan menurunnya energi pengaktifan maka pada suhu yang sama reaksi dapat berlangsung lebih cepat.


Reaksi yang dapat berlangsung dalam dua arah disebut reaksi dapat balik. Apabila dalam suatu reaksi kimia, kecepatan reaksi ke kanan sama dengan kecepatan reaksi ke kiri maka, reaksi dikatakan dalam keadaan setimbang. Secara umum reaksi kesetimbangan dapat dinyatakan sebagai:
A  +  B  ®   C  +  D



ADA DUA MACAM SISTEM KESETIMBANGAN, YAITU :
1.
Kesetimbangan dalam sistem homogen
a.
Kesetimbangan dalam sistem gas-gas
Contoh: 2SO2(g) + O2(g) 
«   2SO3(g)
b.
Kesetimbangan dalam sistem larutan-larutan
Contoh: NH4OH(aq) 
«   NH4+(aq) + OH- (aq)
2.
Kesetimbangan dalam sistem heterogen
a.
Kesetimbangan dalam sistem padat gas
Contoh: CaCO3(s) 
«   CaO(s) + CO2(g)
b.
Kesetimbangan sistem padat larutan
Contoh: BaSO4(s) 
«   Ba2+(aq) + SO42- (aq)
c.
Kesetimbangan dalam sistem larutan padat gas
Contoh: Ca(HCO3)2(aq)  
«   CaCO3(s) + H2O(l) + CO2(g)



Hukum Guldberg dan Wange:
Dalam keadaan kesetimbangan pada suhu tetap, maka hasil kali konsentrasi zat-zat hasil reaksi dibagi dengan hasil kali konsentrasi pereaksi yang sisa dimana masing-masing konsentrasi itu dipangkatkan dengan koefisien reaksinya adalah tetap.
Pernyataan tersebut juga dikenal sebagai hukum kesetimbangan.
Untuk reaksi kesetimbangan: a A + b B 
«   c C + d D maka:
Kc = (C)c x (D)d / (A)a x (B)b

Kc adalah konstanta kesetimbangan yang harganya tetap selama suhu tetap.

BEBERAPA HAL YANG HARUS DIPERHATIKAN
-
Jika zat-zat terdapat dalam kesetimbangan berbentuk padat dan gas yang dimasukkan dalam, persamaan kesetimbangan hanya zat-zat yang berbentuk gas saja sebab konsentrasi zat padat adalah tetap den nilainya telah terhitung dalam harga Kc itu.
Contoh: C(s) + CO2(g)  «   2CO(g)
Kc = (CO)2 / (CO2)
-
Jika kesetimbangan antara zat padat dan larutan yang dimasukkan dalam perhitungan Kc hanya konsentrasi zat-zat yang larut saja.
Contoh: Zn(s) + Cu2+(aq)  «   Zn2+(aq) + Cu(s)
Kc = (Zn2+) / (CO2+)
-
Untuk kesetimbangan antara zat-zat dalam larutan jika pelarutnya tergolong salah satu reaktan atau hasil reaksinya maka konsentrasi dari pelarut itu tidak dimasukkan dalam perhitungan Kc.
Contoh: CH3COO-(aq) + H2O(l)  «   CH3COOH(aq) + OH-(aq)
Kc = (CH3COOH) x (OH-) / (CH3COO-)


Contoh soal:
1. Satu mol AB direaksikan dengan satu mol CD menurut persamaan reaksi:
AB(g) + CD(g)  «   AD(g) + BC(g)
Setelah kesetimbangan tercapai ternyata 3/4 mol senyawa CD berubah menjadi AD dan BC. Kalau volume ruangan 1 liter, tentukan tetapan kesetimbangan untuk reaksi ini !
Jawab:
Perhatikan reaksi kesetimbangan di atas jika ternyata CD berubah (bereaksi) sebanyak 3/4 mol maka AB yang bereaksi juga 3/4 mol (karena koefsiennya sama).
Dalam keadaan kesetimbangan:

(AD) = (BC) = 3/4 mol/l
(AB) sisa = (CD) sisa = 1 - 3/4 = 1/4 n mol/l

Kc = [(AD) x (BC)]/[(AB) x (CD)] = [(3/4) x (3/4)]/[(1/4) x (1/4)] = 9
2. Jika tetapan kesetimbangan untuk reaksi:
A(g) + 2B(g)  «   4C(g)
sama dengan 0.25, maka berapakah besarnya tetapan kesetimbangan bagi reaksi:
2C(g) 
«   1/2A(g) + B(g)
Jawab:
- Untuk reaksi pertama: K1 = (C)4/[(A) x (B)2] = 0.25
- Untuk reaksi kedua : K2 = [(A)1/2 x (B)]/(C)2
- Hubungan antara K1 dan K2 dapat dinyatakan sebagai:
   K1 = 1 / (K2)2 ®   K2 = 2



Azas Le Chatelier menyatakan: Bila pada sistem kesetimbangan diadakan aksi, maka sistem akan mengadakan reaksi sedemikian rupa sehingga pengaruh aksi itu menjadi sekecil-kecilnya.
Perubahan dari keadaan kesetimbangan semula ke keadaan kesetimbangan yang baru akibat adanya aksi atau pengaruh dari luar itu dikenal dengan pergeseran kesetimbangan.
Bagi reaksi: 
A  +  B   «    C  +  D


KEMUNGKINAN TERJADINYA PERGESERAN
1. 
Dari kiri ke kanan, berarti A bereaksi dengan B memhentuk C dan D, sehingga jumlah mol A dan Bherkurang, sedangkan C dan D bertambah.
2.
Dari kanan ke kiri, berarti C dan D bereaksi membentuk A dan B. sehingga jumlah mol C dan Dherkurang, sedangkan A dan B bertambah.

FAKTOR-FAKTOR YANG DAPAT MENGGESER LETAK KESETIMBANGAN ADALAH :
a. Perubahan konsentrasi salah satu zat
b. Perubahan volume atau tekanan
c. Perubahan suhu

A. PERUBAHAN KONSENTRASI SALAH SATU ZAT
Apabila dalam sistem kesetimbangan homogen, konsentrasi salah satu zat diperbesar, maka kesetimbangan akan bergeser ke arah yang berlawanan dari zat tersebut. Sebaliknya, jika konsentrasi salah satu zat diperkecil, maka kesetimbangan akan bergeser ke pihak zat tersebut.
Contoh: 2SO2(g) + O2(g)  «   2SO3(g)
- Bila pada sistem kesetimbangan ini ditambahkan gas SO2, maka kesetimbangan akan bergeser ke kanan.
- Bila pada sistem kesetimbangan ini dikurangi gas O2, maka kesetimbangan akan bergeser ke kiri.




B. PERUBAHAN VOLUME ATAU TEKANAN
Jika dalam suatu sistem kesetimbangan dilakukan aksi yang menyebabkan perubahan volume (bersamaan dengan perubahan tekanan), maka dalam sistem akan mengadakan berupa pergeseran kesetimbangan.
Jika tekanan diperbesar = volume diperkecil, kesetimbangan akan bergeser ke arah jumlah Koefisien Reaksi Kecil.
Jika tekanan diperkecil = volume diperbesar, kesetimbangan akan bergeser ke arah jumlah Koefisien reaksi besar.
Pada sistem kesetimbangan dimana jumlah koefisien reaksi sebelah kiri = jumlah koefisien sebelah kanan, maka perubahan tekanan/volume tidak menggeser letak kesetimbangan.



Contoh: 
N2(g) + 3H2(g)  «   2NH3(g)

Koefisien reaksi di kanan = 2
Koefisien reaksi di kiri = 4

-
Bila pada sistem kesetimbangan tekanan diperbesar (= volume diperkecil), maka kesetimbangan akan
bergeser ke kanan.
-
Bila pada sistem kesetimbangan tekanan diperkecil (= volume diperbesar), maka kesetimbangan akan
bergeser ke kiri.

C. PERUBAHAN SUHU

Menurut Van't Hoff:

-
Bila pada sistem kesetimbangan subu dinaikkan, maka kesetimbangan reaksi akan bergeser ke arah yang membutuhkan kalor (ke arah reaksi endoterm).
Bila pada sistem kesetimbangan suhu diturunkan, maka kesetimbangan reaksi akan bergeser ke arah yang membebaskan kalor (ke arah reaksi eksoterm).
Contoh:
2NO(g) + O2(g) «  2NO2(g) ; DH = -216 kJ
-
Jika suhu dinaikkan, maka kesetimbangan akan bergeser ke kiri.
-
Jika suhu diturunkan, maka kesetimbangan akan bergeser ke kanan.

PENGARUH KATALISATOR TERHADAP KESETIMBANGAN
Fungsi katalisator dalam reaksi kesetimbangan adalah mempercepat tercapainya kesetimbangan dan tidak merubah letak kesetimbangan (harga tetapan kesetimbangan Kc tetap), hal ini disebabkan katalisator mempercepat reaksi ke kanan dan ke kiri sama besar.

HUBUNGAN ANTARA HARGA Kc DENGAN Kp

Untuk reaksi umum:

a A(g) + b B(g) 
«   c C(g) + d D(g)

Harga tetapan kesetimbangan:

Kc = [(C)c . (D)d] / [(A)a . (B)b]
Kp = (PCc x PDd) / (PAa x PBb)
dimana: PA, PB, PC dan PD merupakan tekanan parsial masing-masing gas A, B. C dan D.

Secara matematis, hubungan antara Kc dan Kp dapat diturunkan sebagai:

Kp = Kc (RT) Dn
dimana Dn adalah selisih (jumlah koefisien gas kanan) dan (jumlah koefisien gas kiri).
Contoh:
Jika diketahui reaksi kesetimbangan:
CO2(g) + C(s)  «   2CO(g)

Pada suhu 300o C, harga Kp= 16. Hitunglah tekanan parsial CO2, jika tekanan total dalaun ruang 5 atm!

Jawab:
Misalkan tekanan parsial gas CO = x atm, maka tekanan parsial gas CO2 = (5 - x) atm.
Kp = (PCO)2 / PCO2 = x2 / (5 - x) = 16  ®   x = 4
Jadi tekanan parsial gas CO2 = (5 - 4) = 1 atm
Disosiasi adalah penguraian suatu zat menjadi beberapa zat lain yang lebih sederhana.
Derajat disosiasi adalah perbandingan antara jumlah mol yang terurai dengan jumlah mol mula-mula.
Contoh:
2NH3(g)  «   N2(g) + 3H2(g)
besarnya nilai derajat disosiasi (a):
a = mol NH3 yang terurai / mol NH3 mula-mula

Harga derajat disosiasi terletak antara 0 dan 1, jika:

a = 0 berarti tidak terjadi penguraian
a = 1 berarti terjadi penguraian sempurna
0 <
a < 1 berarti disosiasi pada reaksi setimbang (disosiasi sebagian).
Contoh:
Dalam reaksi disosiasi N2O4 berdasarkan persamaan

      N2O4(g)
«   2NO2(g)

banyaknya mol N2O4 dan NO2 pada keadaan setimbang adalah sama.

Pada keadaan ini berapakah harga derajat disosiasinya ?
Jawab:
Misalkan mol N2O4 mula-mula = a mol
mol N2O4 yang terurai = a
a mol ®  mol N2O4 sisa = a (1 - a) mol
mol NO2 yang terbentuk = 2 x mol N2O4 yang terurai = 2 a
a mol
Pada keadaan setimbang:
mol N2O4 sisa = mol NO2 yang terbentuk
a(1 - a) = 2a a ®  1 - a = 2 a ®  a = 1/3




BY : RULY PERMATA I / 22
( ELEVEN SCIENCE 2 )
PENGOLAHAN AIR KOTOR UNTUK AIR MINUM
Air yang digunakan harus memenuhi syarat dari segi kualitas maupun kuantitasnya. Secara kualitas, air harus tersedia pada kondisi yang memenuhi syarat kesehatan. Kualitas air dapat ditinjau dari segi fisika , kimia dan biologi. Kualitas air yang baik ini tidak selamanya tersedia dialam. Dengan adanya perkembangan industri dan pemukiman dapat mengancam kelestarian air bersih. Sehingga diperlukan upaya perbaikan secara sederhana maupun modern

Persyaratan Air Minum / air bersih
1. persyaratan fisik

jernih atau tidak keruh

tidak berwarna

rasanya tawar

tidak berbau

temperaturnya normal

tidak mengandung padatan

2. persyaratan kimia

pH netral

tidak mengandung kimia beracun

tidak mengandung garam atau ion-ion logam

kesadahan rendah

Tidak mengandung bahan organik

3. persyaratan mikrobiologis

Tidak mengandung bakteri pathogen
















Pengertian Dan Prinsip Pengolahan Air
proses pengolahan air minum merupakan proses perubahan sifat fisik, kimia dan biologi air baku agar memenuhi syarat untuk digunakan sebagai air minum. Tujuan dan kegiatan pengolahan air minum adalah :
menurunkan kekeruhan

mengurangi bau, rasa, dan warna

mematikan mikroorganisme

mengurangi kadar bahan-bahan yang terlarut dalam air

menurunkan kesadahan

memperbaiki pH


prinsip dasar pengolahan air:

Besifat tepat guna dan sesuai dengan kondisi, lingkungan fisik, maupun sosial
budaya setempat

Pengoperasiannya mudah dan sederhana

Bahan-bahan yang digunakan berharga murah

Bahan-bahan yang digunakan teersedia dilokasi dan mudah diperoleh

Efektif, memiliki daya pembersihvyangsar untuk memurnikan air.

Pembuatan Penjernihan Air Dengan Cara Penyaringan

Bahan :

Arang

Kran air

Tawas

Kaporit

Pasir

Ijuk

Kerikil


Alat :

Drum/Bak Pengendap dan Drum/Bak Penyaring
Tahapan penjernihan air kotor adalah pengendapan dan penyaringan. Media
penyaringnya adalah :
o
Pasir - digunkan untuk menyaring padatan. Ukuran pasir yang dipakai
biasanya 0,2-0,8 mm. Jika sudah jernuh, pasir harus dibersihkan.
o
Arang Batok - terbuat dari tempurung kelapa/kayu yang dibakar hingga jadi arang. Berguna untuk mengurangi warna dan bau. Ukurannya berdiameter 0.1 mm atau berbentuk bubuk. Jika air yang disaring sudah tidak jernih lagi, arang
batok harus dicuci atau diganti.
oKapur, Tawas, Dan Kaporit - disebut penggumpal koagulan yang membantu zat
kimia pencemar menjadi endapan. Selanjutnya air disaring lagi dengan media
lain.
oPenyaring lain-yang mudah didapat adalah Ijuk dan Kerikil. Logikanya batu
ukuran besar menyaring kotoran yang besar, begitu seterusya hingga ke ukuran
yang paling kecil.
Langkah-langkah:
1. Air kotor masuk ke Bak Pengendap, kemudian masukkan 1 grtaw as/10 liter air, 1 grkapur/10 liter air dan 2.5 gr kaporit/10 liter air. Aduk air dalam Bak secara perlahan dan satu arah. Pengadukan ini sebaiknya dilakukan pada malam hari sehingga pada pagi hari pengendapan berlangsung dengan sempurna. Buka keran pada Bak Pengendap secara perlahan agar endapan tidak terbawa pada Bak Penyaringan.
2. Pada Bak Penyaringan, susun media penyaringan sebagai berikut:
-Kerik il setinggi 5 cm pada dasar bak kemudian,
- Arang Batok setinggi 10 cm kemudian
-Iju k setinggi 10 cm dan
- Pasir Halus berdiameter 0,25 - 0,1 mm setinggi 20 cm.
Air yang megalir dari Bak Pengendapan akan dijernihkan lagi melalui proses
penyaringan sehingga diharapkan air bersih akan keluar pada saat keran dibuka.
Jika air yang keluar pada bak ke dua sudah tidak jernih lagi, medai penyaring
perlu dicuci atau diganti yang baru. Penggunaan drum sebagai bak Pengendapan
dan Bak Penyaring dapat diganti dengan pemakaian Gentong.








Tidak ada komentar:

Posting Komentar

MY PHOTO

MY PHOTO
HOW CUTE ... :P